Three-dimensional force-tactile sensors based on embedded fiber Bragg gratings in anisotropic materials
Three-dimensional force-tactile sensors have attracted much attention for their great potential in the applications of human-computer interaction and bionic intelligent robotics. Herein, a flexible haptic sensor based on dual fiber Bragg gratings (FBGs) embedded in a bionic anisotropic material is p...
Gespeichert in:
Veröffentlicht in: | Optics letters 2023-05, Vol.48 (9), p.2269-2272 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional force-tactile sensors have attracted much attention for their great potential in the applications of human-computer interaction and bionic intelligent robotics. Herein, a flexible haptic sensor based on dual fiber Bragg gratings (FBGs) embedded in a bionic anisotropic material is proposed for the detection of 3D forces. To achieve the discrimination of normal and tangential force angles and magnitudes, FBGs were orthogonally embedded in a flexible silicone cylinder for force determination. Fe
O
nanoparticles were used as a modifying agent to induce anisotropic elasticity of the silicone structure to improve the angle detection resolution. The results show that the flexible tactile sensor can detect the angle and magnitude of the 3D force. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.486484 |