A novel AC flatness adjustment technique for wideband resistive voltage dividers

Resistive voltage dividers (RVDs) are commonly used as AC attenuation networks in measurement circuits; however, their high-frequency gain is always disturbed by nasty parasitic elements and deviates significantly from the desired design value. This paper proposes a closed-loop adjustment technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2023-05, Vol.94 (5)
Hauptverfasser: Hu, Hongjun, Shen, Haikuo, Zhao, Baoshui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistive voltage dividers (RVDs) are commonly used as AC attenuation networks in measurement circuits; however, their high-frequency gain is always disturbed by nasty parasitic elements and deviates significantly from the desired design value. This paper proposes a closed-loop adjustment technique for adjusting the frequency response flatness of wideband RVDs (WRVDs). In the proposed adjustment scheme, the frequency response flatness of the WRVD is determined by a voltage-controlled compensation capacitor, whereas the corresponding control voltage is provided by a digital potentiometer. The settling time and the adjustment error of the loop are analyzed to evaluate the adjustment performance. To verify the concept, the adjustment loop is incorporated into a 100:1 WRVD for demonstration. Final experiments show that the proposed technique improves gain flatness by 81 times compared with uncompensated flatness, with 1.15% up to 2 MHz, and that the compensated voltage divider has an excellent linearity of 36 ppm up to 100 V.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0138918