Physiological and developmental dysfunctions in the dengue vector Culex pipiens (Diptera: Culicidae) immature stages following treatment with zinc oxide nanoparticles

The medical value of mosquitoes attracted researchers worldwide to search for a valuable way to control such serious insects. The continuous development of resistance against chemical insecticides pushed toward looking for novel and promising compounds against mosquitoes. In this study, the toxicity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pesticide biochemistry and physiology 2023-05, Vol.192, p.105395-105395, Article 105395
Hauptverfasser: Ibrahim, Ahmed M.A., Thabet, Marwa Adel, Ali, Ali M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The medical value of mosquitoes attracted researchers worldwide to search for a valuable way to control such serious insects. The continuous development of resistance against chemical insecticides pushed toward looking for novel and promising compounds against mosquitoes. In this study, the toxicity and physio-developmental effects of 10–30 nm spherical zinc oxide nanoparticles (ZnONPs) in aqueous suspension was addressed against the first larval instar of Culex pipiens mosquito. The calculated value of LC50 was about 0.892 g/L while the sub lethal concentration LC20 recorded about 0.246 g/L. Larvae treated with ZnONPs suffered reduced growth rate, longer developmental period and malformations in the breathing tube. Furthermore, the treated larvae showed clear abnormal appearance of the gastric caeca and midgut epithelia under transmission electron microscope (TEM). These abnormalities appeared as condensation of the nuclear chromatin, abnormal shape or absence of microvilli, highly increased amount of smooth endoplasmic reticulum in the cytoplasm and appearance of numerous vacuoles. Additionally, ZnONPs interfered with several biochemical pathways such as induction of oxidative stress which appeared in the form of increased levels of hydrogen peroxide and inability to activate the detoxifying enzymes alkaline phosphatase (ALP), catalase and glutathione peroxidase (GPX). On the contrary, the activity of the antioxidant enzyme superoxide dismutase (SOD) increased in treated larvae. Furthermore, LC20 and LC50 of ZnONPs inhibited the growth rate of the larval gut fauna in vitro. These results clearly show that ZnONPs target several tissues leading to serious alteration in the physiological and developmental processes in C. pipiens mosquito larvae. [Display omitted] •Zinc oxide nanoparticles (ZnONPs) alter growth and development of Culex pipiens larvae.•ZnONPs induce histopathological signs and oxidative stress in the larval tissues.•ZnONPs manipulate the detoxification pathways in C. pipiens larvae.•ZnONPs are particularly affecting C. pipiens larvae via disruption of gut micro biota.
ISSN:0048-3575
1095-9939
DOI:10.1016/j.pestbp.2023.105395