Observation of an Inner-Shell Orbital Clock Transition in Neutral Ytterbium Atoms

We observe a weakly allowed optical transition of atomic ytterbium from the ground state to the metastable state 4f^{13}5d6s^{2} (J=2) for all five bosonic and two fermionic isotopes with resolved Zeeman and hyperfine structures. This inner-shell orbital transition has been proposed as a new frequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-04, Vol.130 (15), p.153402-153402, Article 153402
Hauptverfasser: Ishiyama, Taiki, Ono, Koki, Takano, Tetsushi, Sunaga, Ayaki, Takahashi, Yoshiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We observe a weakly allowed optical transition of atomic ytterbium from the ground state to the metastable state 4f^{13}5d6s^{2} (J=2) for all five bosonic and two fermionic isotopes with resolved Zeeman and hyperfine structures. This inner-shell orbital transition has been proposed as a new frequency standard as well as a quantum sensor for new physics. We find magic wavelengths through the measurement of the scalar and tensor polarizabilities and reveal that the measured trap lifetime in a three-dimensional optical lattice is 1.9(1) s, which is crucial for precision measurements. We also determine the g factor by an interleaved measurement, consistent with our relativistic atomic calculation. This work opens the possibility of an optical lattice clock with improved stability and accuracy as well as novel approaches for physics beyond the standard model.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.130.153402