Experimentally realized in situ backpropagation for deep learning in photonic neural networks

Integrated photonic neural networks provide a promising platform for energy-efficient, high-throughput machine learning with extensive scientific and commercial applications. Photonic neural networks efficiently transform optically encoded inputs using Mach-Zehnder interferometer mesh networks inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2023-04, Vol.380 (6643), p.398-404
Hauptverfasser: Pai, Sunil, Sun, Zhanghao, Hughes, Tyler W, Park, Taewon, Bartlett, Ben, Williamson, Ian A D, Minkov, Momchil, Milanizadeh, Maziyar, Abebe, Nathnael, Morichetti, Francesco, Melloni, Andrea, Fan, Shanhui, Solgaard, Olav, Miller, David A B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrated photonic neural networks provide a promising platform for energy-efficient, high-throughput machine learning with extensive scientific and commercial applications. Photonic neural networks efficiently transform optically encoded inputs using Mach-Zehnder interferometer mesh networks interleaved with nonlinearities. We experimentally trained a three-layer, four-port silicon photonic neural network with programmable phase shifters and optical power monitoring to solve classification tasks using "in situ backpropagation," a photonic analog of the most popular method to train conventional neural networks. We measured backpropagated gradients for phase-shifter voltages by interfering forward- and backward-propagating light and simulated in situ backpropagation for 64-port photonic neural networks trained on MNIST image recognition given errors. All experiments performed comparably to digital simulations ([Formula: see text]94% test accuracy), and energy scaling analysis indicated a route to scalable machine learning.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.ade8450