Size and structure of motor variability in young and old adults performing a rhythmic, repetitive tapping task

The size of motor variability increases with fatigue in repetitive upper limb tasks, and the structure of variability differs with old age. However, the combined influences of old age and fatigue on the size and structure of movement-to-movement variability are unclear. Eighteen young and sixteen ol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2023-05, Vol.152, p.111595-111595, Article 111595
Hauptverfasser: Bailey, Christopher A., Hasanbarani, Fariba, Slopecki, Matthew, Yang, Chen, Côté, Julie N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The size of motor variability increases with fatigue in repetitive upper limb tasks, and the structure of variability differs with old age. However, the combined influences of old age and fatigue on the size and structure of movement-to-movement variability are unclear. Eighteen young and sixteen old adults performed a fatiguing repetitive tapping task while seated using their dominant arm. Optoelectronic motion capture served to measure upper body angles via forward kinematics. Movement-to-movement variability was measured by the size at joints (standard deviation: SD) and by the structure of the uncontrolled manifold (variance: VUCM, VORT; synergy index: ΔVz) in the first and final minutes of the task for the early, middle, and late forward movement phases. Outcomes were analyzed by Age*Condition*Phase general estimating equations. Old adults had lower humerothoracic abduction/adduction and flexion/extension SD, wrist flexion/extension SD, VUCM, and VORT, mainly in the early movement phase (p  0.014). Results indicate that fatigue adjustments were mainly in the frontal plane, old age did not affect the ratio of good vs. bad variability, and motor synergy was preserved during fatigue despite less motor flexibility in old age.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2023.111595