Copper Increases the Sensitivity of Cholangiocarcinoma Cells to Tripterine by Inhibiting TMX2-Mediated Unfolded Protein Reaction Activation

Chemotherapy-induced adaptive resistance is a significant factor that contributes to low therapeutic efficacy in tumor cells. The unfolded protein response (UPR) is a key mechanism in the development of drug resistance and serves as a critical reactive system for endoplasmic reticulum stress. Cu(II)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2023-10, Vol.12 (26), p.e2300913-e2300913
Hauptverfasser: Liu, Hongwen, Xu, Lei, Zhang, Yiyang, Xie, Yiqiong, Wang, Lishan, Zhou, Yue, Wang, Zhangding, Pan, Yani, Li, Wenying, Xu, Lu, Xu, Xinyun, Wang, Ting, Meng, Kui, He, Jian, Qiu, Yudong, Xu, Guifang, Ge, Weihong, Zhu, Yun, Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemotherapy-induced adaptive resistance is a significant factor that contributes to low therapeutic efficacy in tumor cells. The unfolded protein response (UPR) is a key mechanism in the development of drug resistance and serves as a critical reactive system for endoplasmic reticulum stress. Cu(II) can reduce the abundance of 60S ribosomal subunits and inhibit rRNA processing, leading to a decrease in the translation efficiency of the GRP78/BiP mRNA, which serves as a primary sensor for UPR activation. In this study, CuET-Lipid@Cela, composed of CuET and tripterine (Cela), demonstrates a significant synergistic antitumor effect on cholangiocarcinoma (CCA) cells. RNA-Seq is used to investigate the underlying mechanism, which suggests that the transmembrane protein 2 (TMX2) gene may be crucial in Cu(II) regulation of UPR by inhibiting the activation of GRP78/BiP and PERK/eIF2α. The synergistic antitumor efficacy of CuET-Lipid@Cela via inhibition of TMX2 is also confirmed in a myrAKT/YapS127A plasmid-induced primary CCA mouse model, providing new insights into the reversal of acquired chemotherapy-induced resistance in CCA.
ISSN:2192-2640
2192-2659
DOI:10.1002/adhm.202300913