Approximation Capabilities of Hierarchical Fuzzy Systems

Derived from practical application in location analysis and pricing, and based on the approach of hierarchical structure analysis of continuous functions, this paper investigates the approximation capabilities of hierarchical fuzzy systems. By first introducing the concept of the natural hierarchica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2005-10, Vol.13 (5), p.659-672
Hauptverfasser: Xiao-Jun Zeng, Keane, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Derived from practical application in location analysis and pricing, and based on the approach of hierarchical structure analysis of continuous functions, this paper investigates the approximation capabilities of hierarchical fuzzy systems. By first introducing the concept of the natural hierarchical structure, it is proved that continuous functions with natural hierarchical structure can be naturally and effectively approximated by hierarchical fuzzy systems to overcome the curse of dimensionality in both the number of rules and parameters. Then, based on Kolmogorov's theorem, it is shown that any continuous function can be represented as a superposition of functions with the natural hierarchical structure and can then be approximated by hierarchical fuzzy systems to achieve the universal approximation property. Further, the conditions under which the hierarchical fuzzy approximation is superior to the standard fuzzy approximation in overcoming the curse of dimensionality are analyzed
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2005.856559