Characterization and construction of helical polynomial space curves
Helical space curves are characterized by the property that their unit tangents maintain a constant inclination with respect to a fixed line, the axis of the helix. Equivalently, a helix exhibits a circular tangent indicatrix, and constant curvature/torsion ratio. If a polynomial space curve is heli...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2004-01, Vol.162 (2), p.365-392 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Helical space curves are characterized by the property that their unit tangents maintain a constant inclination with respect to a fixed line, the axis of the helix. Equivalently, a helix exhibits a circular tangent indicatrix, and constant curvature/torsion ratio. If a polynomial space curve is helical, it must be a Pythagorean-hodograph (PH) curve. The quaternion representation of spatial PH curves is used to characterize and construct helical curves. Whereas all spatial PH cubics are helical, the helical PH quintics form a proper subset of all PH quintics. Two types of PH quintic helix are identified: (i) the “monotone-helical” PH quintics, in which a scalar quadratic factors out of the hodograph, and the tangent exhibits a consistent sense of rotation about the axis; and (ii) general helical PH quintics, which possess irreducible hodographs, and may suffer reversals in the sense of tangent rotation. First-order Hermite interpolation is considered for both helical PH quintic types. The helicity property offers a means of fixing the residual degrees of freedom in the general PH quintic Hermite interpolation problem, and yields interpolants with desirable shape features. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2003.08.030 |