Tuning Pore Polarization to Boost Ethane/Ethylene Separation Performance in Hydrogen‐Bonded Organic Frameworks

Hydrogen‐bonded organic frameworks (HOFs) show great potential in energy‐saving C2H6/C2H4 separation, but there are few examples of one‐step acquisition of C2H4 from C2H6/C2H4 because it is still difficult to achieve the reverse‐order adsorption of C2H6 and C2H4. In this work, we boost the C2H6/C2H4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-06, Vol.62 (25), p.e202305041-n/a
Hauptverfasser: Zhou, Yunzhe, Chen, Cheng, Krishna, Rajamani, Ji, Zhenyu, Yuan, Daqiang, Wu, Mingyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen‐bonded organic frameworks (HOFs) show great potential in energy‐saving C2H6/C2H4 separation, but there are few examples of one‐step acquisition of C2H4 from C2H6/C2H4 because it is still difficult to achieve the reverse‐order adsorption of C2H6 and C2H4. In this work, we boost the C2H6/C2H4 separation performance in two graphene‐sheet‐like HOFs by tuning pore polarization. Upon heating, an in situ solid phase transformation can be observed from HOF‐NBDA(DMA) (DMA=dimethylamine cation) to HOF‐NBDA, accompanied with transformation of the electronegative skeleton into neutral one. As a result, the pore surface of HOF‐NBDA has become nonpolar, which is beneficial to selectively adsorbing C2H6. The difference in the capacities for C2H6 and C2H4 is 23.4 cm3 g−1 for HOF‐NBDA, and the C2H6/C2H4 uptake ratio is 136 %, which are much higher than those for HOF‐NBDA(DMA) (5.0 cm3 g−1 and 108 % respectively). Practical breakthrough experiments demonstrate HOF‐NBDA could produce polymer‐grade C2H4 from C2H6/C2H4 (1/99, v/v) mixture with a high productivity of 29.2 L kg−1 at 298 K, which is about five times as high as HOF‐NBDA(DMA) (5.4 L kg−1). In addition, in situ breakthrough experiments and theoretical calculations indicate the pore surface of HOF‐NBDA is beneficial to preferentially capture C2H6 and thus boosts selective separation of C2H6/C2H4. A pore polarity tuning strategy has been realized through the solid‐state transformation of graphene‐sheet‐like hydrogen‐bonded organic frameworks, which significantly improves the performance of one‐step purification of C2H4 from C2H6/C2H4 mixture.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202305041