A least square generative network based on invariant contrastive feature pair learning for multimodal MR image synthesis

Purpose During MR-guided neurosurgical procedures, several factors may limit the acquisition of additional MR sequences, which are needed by neurosurgeons to adjust surgical plans or ensure complete tumor resection. Automatically synthesized MR contrasts generated from other available heterogeneous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2023-06, Vol.18 (6), p.971-979
Hauptverfasser: Touati, Redha, Kadoury, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose During MR-guided neurosurgical procedures, several factors may limit the acquisition of additional MR sequences, which are needed by neurosurgeons to adjust surgical plans or ensure complete tumor resection. Automatically synthesized MR contrasts generated from other available heterogeneous MR sequences could alleviate timing constraints. Methods We propose a new multimodal MR synthesis approach leveraging a combination of MR modalities presenting glioblastomas to generate an additional modality. The proposed learning approach relies on a least square GAN (LSGAN) using an unsupervised contrastive learning strategy. We incorporate a contrastive encoder, which extracts an invariant contrastive representation from augmented pairs of the generated and real target MR contrasts. This contrastive representation describes a pair of features for each input channel, allowing to regularize the generator to be invariant to the high-frequency orientations. Moreover, when training the generator, we impose on the LSGAN loss another term reformulated as the combination of a reconstruction and a novel perception loss based on a pair of features. Results When compared to other multimodal MR synthesis approaches evaluated on the BraTS’18 brain dataset, the model yields the highest Dice score with 0.748 ± 0.04 and achieves the lowest variability information of 2.1 ± 1.11 , with a probability rand index score of 0.84 ± 0.03 and a global consistency error of 0.17 ± 0.04 . Conclusion The proposed model allows to generate reliable MR contrasts with enhanced tumors on the synthesized image using a brain tumor dataset (BraTS’18). In future work, we will perform a clinical evaluation of residual tumor segmentations during MR-guided neurosurgeries, where limited MR contrasts will be acquired during the procedure.
ISSN:1861-6429
1861-6410
1861-6429
DOI:10.1007/s11548-023-02916-z