Green, General and Low‐cost Synthesis of Porous Organic Polymers in Sub‐kilogram Scale for Catalysis and CO2 Capture

Porous organic polymers (POPs) with high porosity and tunable functionalities have been widely studied for use in gas separation, catalysis, energy conversion and energy storage. However, the high cost of organic monomers, and the use of toxic solvents and high temperatures during synthesis pose obs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-07, Vol.62 (27), p.e202305225-n/a
Hauptverfasser: Luo, Dan, Shi, Tianhui, Li, Qiao‐Hong, Xu, Qinqin, Strømme, Maria, Zhang, Qian‐Feng, Xu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porous organic polymers (POPs) with high porosity and tunable functionalities have been widely studied for use in gas separation, catalysis, energy conversion and energy storage. However, the high cost of organic monomers, and the use of toxic solvents and high temperatures during synthesis pose obstacles for large‐scale production. Herein, we report the synthesis of imine and aminal‐linked POPs using inexpensive diamine and dialdehyde monomers in green solvents. Theoretical calculations and control experiments show that using meta‐diamines is crucial for forming aminal linkages and branching porous networks from [2+2] polycondensation reactions. The method demonstrates good generality in that 6 POPs were successfully synthesized from different monomers. Additionally, we scaled up the synthesis in ethanol at room temperature, resulting in the production of POPs in sub‐kilogram quantities at a relatively low cost. Proof‐of‐concept studies demonstrate that the POPs can be used as high‐performance sorbents for CO2 separation and as porous substrates for efficient heterogeneous catalysis. This method provides an environmentally friendly and cost‐effective approach for large‐scale synthesis of various POPs. Porous organic polymers (POPs) with high surface areas were synthesized using inexpensive diamine and dialdehyde monomers under green synthesis conditions. Sub‐kilogram yields of POP were obtained from a scaled‐up synthesis in ethanol at room temperature. The cost of POPs can be reduced to ≈10 USD/kg, making it significantly more cost‐effective compared to other porous materials.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202305225