Penalized partially linear models using sparse representations with an application to fMRI time series

In this paper, we consider modeling the nonparametric component in partially linear models (PLMs) using linear sparse representations, e.g., wavelet expansions. Two types of representations are investigated, namely, orthogonal bases (complete) and redundant overcomplete expansions. For bases, we int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-09, Vol.53 (9), p.3436-3448
Hauptverfasser: Fadili, J.M., Bullmore, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider modeling the nonparametric component in partially linear models (PLMs) using linear sparse representations, e.g., wavelet expansions. Two types of representations are investigated, namely, orthogonal bases (complete) and redundant overcomplete expansions. For bases, we introduce a regularized estimator of the nonparametric part. The important contribution here is that the nonparametric part can be parsimoniously estimated by choosing an appropriate penalty function for which the hard and soft thresholding estimators are special cases. This allows us to represent in an effective manner a broad class of signals, including stationary and/or nonstationary signals and avoids excessive bias in estimating the parametric component. We also give a fast estimation algorithm. The method is then generalized to handle the case of overcomplete representations. A large-scale simulation study is conducted to illustrate the finite sample properties of the estimator. The estimator is finally applied to real neurophysiological functional magnetic resonance imaging (MRI) data sets that are suspected to contain both smooth and transient drift features.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2005.853207