Yield Pressure Measurements and Analysis for Autofrettaged Cannons

Yield pressure corresponding to a small permanent OD strain was measured in quasi-static laboratory tests of autofrettaged ASTM A723 steel cannon pressure vessels. Yield pressure was found to be a consistent ratio of the yield strength measured from specimens located in close proximity to the area o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pressure vessel technology 2003-02, Vol.125 (1), p.7-10
Hauptverfasser: Underwood, John H, Moak, David B, Audino, Michael J, Parker, Anthony P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Yield pressure corresponding to a small permanent OD strain was measured in quasi-static laboratory tests of autofrettaged ASTM A723 steel cannon pressure vessels. Yield pressure was found to be a consistent ratio of the yield strength measured from specimens located in close proximity to the area of observed yielding. Yield pressure measurements for dynamic cannon firing with typically a 5-ms pressure pulse duration gave 14% higher yield pressures, attributed to strain rate effects on plastic deformation. Calculated Von Mises yield pressure for the laboratory test conditions, including the Bauschinger-modified ID residual stress and open-end vessel conditions, agreed with measured yield pressure within 3–5%. Calculated yield pressure was found to be insensitive to the value of axial residual stress, since axial stress is the intermediate value in the Von Mises yield criterion. A description of yield pressure normalized by yield strength was given for autofrettaged A723 open-end pressure vessels over a range of wall ratio and degree of autofrettage, including effects of Bauschinger-modified residual stress. This description of yield pressure is proposed as a design procedure for cannons and other pressure vessels.
ISSN:0094-9930
1528-8978
DOI:10.1115/1.1526857