An algorithm for counting short cycles in bipartite graphs

Let G=(U/spl cup/W, E) be a bipartite graph with disjoint vertex sets U and W, edge set E, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g+2, and g+4 incident upon every vertex in U/spl cup/W. The proposed cycle counting algorithm consists of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-01, Vol.52 (1), p.287-292
Hauptverfasser: Halford, T.R., Chugg, K.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G=(U/spl cup/W, E) be a bipartite graph with disjoint vertex sets U and W, edge set E, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g+2, and g+4 incident upon every vertex in U/spl cup/W. The proposed cycle counting algorithm consists of integer matrix operations and its complexity grows as O(gn/sup 3/) where n=max(|U|,|W|).
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2005.860472