An algorithm for counting short cycles in bipartite graphs
Let G=(U/spl cup/W, E) be a bipartite graph with disjoint vertex sets U and W, edge set E, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g+2, and g+4 incident upon every vertex in U/spl cup/W. The proposed cycle counting algorithm consists of i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2006-01, Vol.52 (1), p.287-292 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G=(U/spl cup/W, E) be a bipartite graph with disjoint vertex sets U and W, edge set E, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g+2, and g+4 incident upon every vertex in U/spl cup/W. The proposed cycle counting algorithm consists of integer matrix operations and its complexity grows as O(gn/sup 3/) where n=max(|U|,|W|). |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2005.860472 |