Operando Revealing the Crystal Phase Transformation and Electrocatalytic Activity Correlation of MnO2 toward Glycerol Electrooxidation

In this work, we report for the first time a comprehensive operando investigation of the intricate correlation between dynamic phase evolution and glycerol electrooxidation reaction (GEOR) performance across three primary MnO2 crystallographic phases (α-, β-, and γ-MnO2). The results showed that all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-05, Vol.15 (18), p.22662-22671
Hauptverfasser: Tran, Giang-Son, Vo, Truong-Giang, Chiang, Chia-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we report for the first time a comprehensive operando investigation of the intricate correlation between dynamic phase evolution and glycerol electrooxidation reaction (GEOR) performance across three primary MnO2 crystallographic phases (α-, β-, and γ-MnO2). The results showed that all three electrocatalysts exhibited comparable selectivity toward three-carbon products (∼90%), but γ-MnO2 exhibited superior performance, with a low onset potential of ∼1.45 VRHE, the highest current density of ∼1.9 mA cm–2 at 1.85 VRHE, and reasonable stability. Operando Raman spectroscopy revealed the potential-induced surface reconstruction of different MnO2 structures from which a correlation among the applied potential, electrocatalytic activity, and product distribution was identified. The higher the applied potential, the greater conversion from the original structure to δ-MnO2, resulting in lower C–C cleavage and higher 3C product selectivity. This study not only provides a systematic understanding of structure-controlled electrocatalytic activity for high selectivity toward 3C products of MnO2 but also contributes to the development of a non-noble and environmentally friendly catalyst for valorizing glycerol.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c00857