Anti-Atherogenic Protection by Oligomeric Proanthocyanidins via Regulating Collagen Crosslinking Against CC Diet-Induced Atherosclerosis in Rats
The synthesis of collagen and its turnover remained as critical determinants for the progression of atherosclerosis. During this condition, proteases secreted by SMCs and foam cells in the necrotic core degrade collagen. Growing evidences demonstrated that consumption of antioxidant rich diet is hig...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2023-08, Vol.195 (8), p.4881-4892 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of collagen and its turnover remained as critical determinants for the progression of atherosclerosis. During this condition, proteases secreted by SMCs and foam cells in the necrotic core degrade collagen. Growing evidences demonstrated that consumption of antioxidant rich diet is highly associated with a reduced risk of atherosclerosis. Oligomeric proanthocyanidins (OPC) have been proved to possess promising antioxidant, anti-inflammatory and cardioprotective activity, based on our previous studies. The present study aims to investigate the efficacy of OPC isolated from
Crataegus oxyacantha
berries as a natural collagen crosslinker and anti-atherogenic agent. Spectral studies like FTIR, ultraviolet and circular dichroism analysis confirmed the in vitro crosslinking ability of OPC with rat tail collagen when compared to the standard epigallocatechin gallate. The administration of cholesterol:cholic acid (CC) diet induces proteases-mediated collagen degradation that could result in plaque instability. Further, the CC diet fed rats showed significantly increased levels of total cholesterol and triacylglycerols which, in turn, increases the activities of collagen degrading proteases-MMPs (MMP 1, 2 and 9) and Cathepsin S and D. Upon OPC treatment, marked reduction in the lipid content, activation of proteases with concomitant increase in the mRNA levels of collagen Type I and Type III as similar to atorvastatin treatment were observed .Thus, OPC supplementation may contribute to the prevention of atherosclerotic plaque instability by acting as a natural crosslinker of collagen. |
---|---|
ISSN: | 0273-2289 1559-0291 1559-0291 |
DOI: | 10.1007/s12010-023-04487-w |