Enantioselective Total Syntheses of Grayanane Diterpenoids and (+)-Kalmanol: Evolution of the Bridgehead Carbocation-Based Cyclization and Late-Stage Functional Group Manipulation Strategies

Grayanane diterpenoids contain over 300 highly oxidized and structurally complex members, many of which possess important biological activities. Full details are provided for the development of the concise, enantioselective and divergent total syntheses of grayanane diterpenoids and (+)-kalmanol. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2023-05, Vol.88 (9), p.6017-6038
Hauptverfasser: Kong, Lingran, Yu, Hang, Deng, Mengping, Wu, Fanrui, Chen, Si-Cong, Luo, Tuoping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grayanane diterpenoids contain over 300 highly oxidized and structurally complex members, many of which possess important biological activities. Full details are provided for the development of the concise, enantioselective and divergent total syntheses of grayanane diterpenoids and (+)-kalmanol. The unique 7-endo-trig cyclization based on a bridgehead carbocation was designed and implemented to construct the 5/7/6/5 tetracyclic skeleton, demonstrating the practical value of the bridgehead carbocation-based cyclization strategy. Extensive studies of late-stage functional group manipulation were performed to forge the C1 stereogenic center, during which a photoexcited intramolecular hydrogen atom transfer reaction was discovered and the mechanism was further studied through density functional theory (DFT) calculations. The biomimetic 1,2-rearrangement from the grayanoid skeleton provided a 5/8/5/5 tetracyclic framework and resulted in the first total synthesis of (+)-kalmanol.
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.3c00365