At room temperature, the impact of strain rates on the damage of CVPC compound

The demand of polymers has been increasing over the past decade, due to their specific properties. This large use leads mechanical engineers to study material damage problems. Partial or total ruptures resulting from these problems frequently cause accidents. Unfortunately, such incidents occur freq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2024-11, Vol.31 (53), p.62032-62037
Hauptverfasser: Khtibari, Abderrahim, El Ouahbi, Said, En-Naji, Abderrazak, Kartouni, Abdelkrim, El Ghorba, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The demand of polymers has been increasing over the past decade, due to their specific properties. This large use leads mechanical engineers to study material damage problems. Partial or total ruptures resulting from these problems frequently cause accidents. Unfortunately, such incidents occur frequently due to insufficient understanding of the operating conditions or the types of damage. This paper presents the impact of strain rate on the damage of chlorinated polyvinyl chloride compounds. Tensile tests were conducted on the samples at room temperature with three strain rates (5, 50, and 500 mm/min). The results of the tests are used to develop two damage models for this polymer: the first one generated through static damage and the second one acquired via the use of unified theory. Both models are constructed on the concept of stress. The results clearly obtained from these two models enable us to describe the mechanical comportment of chlorinated polyvinyl chloride and to forecast how the damage will develop. Moreover, three stages of damage are identified to assist predictive maintenance in defining the material CPVC’s safety and maintenance intervals.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-27155-2