Deorphanizing Peptides Using Structure Prediction
Many endogenous peptides rely on signaling pathways to exert their function, but identifying their cognate receptors remains a challenging problem. We investigate the use of AlphaFold-Multimer complex structure prediction together with transmembrane topology prediction for peptide deorphanization. W...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2023-05, Vol.63 (9), p.2651-2655 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many endogenous peptides rely on signaling pathways to exert their function, but identifying their cognate receptors remains a challenging problem. We investigate the use of AlphaFold-Multimer complex structure prediction together with transmembrane topology prediction for peptide deorphanization. We find that AlphaFold’s confidence metrics have strong performance for prioritizing true peptide–receptor interactions. In a library of 1112 human receptors, the method ranks true receptors in the top percentile on average for 11 benchmark peptide–receptor pairs. |
---|---|
ISSN: | 1549-9596 1549-960X |
DOI: | 10.1021/acs.jcim.3c00378 |