Thermocapillary instability and wave formation on a film falling down a uniformly heated plane
We consider a thin layer of a viscous fluid flowing down a uniformly heated planar wall. The heating generates a temperature distribution on the free surface which in turn induces surface tension gradients. We model this thermocapillary flow by using the Shkadov integral-boundary-layer (IBL) approxi...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2003-10, Vol.492, p.303-338, Article S0022112003005809 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a thin layer of a viscous fluid flowing down a uniformly heated planar wall. The heating generates a temperature distribution on the free surface which in turn induces surface tension gradients. We model this thermocapillary flow by using the Shkadov integral-boundary-layer (IBL) approximation of the Navier–Stokes/energy equations and associated free-surface boundary conditions. Our linear stability analysis of the flat-film solution is in good agreement with the Goussis & Kelly (1991) stability results from the Orr–Sommerfeld eigenvalue problem of the full Navier–Stokes/energy equations. We numerically construct nonlinear solutions of the solitary wave type for the IBL approximation and the Benney-type equation developed by Joo et al. (1991) using the usual long-wave approximation. The two approaches give similar solitary wave solutions up to an $O(1)$ Reynolds number above which the solitary wave solution branch obtained by the Joo et al. equation is unrealistic, with branch multiplicity and limit points. The IBL approximation on the other hand has no limit points and predicts the existence of solitary waves for all Reynolds numbers. Finally, in the region of small film thicknesses where the Marangoni forces dominate inertia forces, our IBL system reduces to a single equation for the film thickness that contains only one parameter. When this parameter tends to zero, both the solitary wave speed and the maximum amplitude tend to infinity. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112003005809 |