A new dimension sensitive property for cellular automata
In this paper we study number-decreasing cellular automata. They form a super-class of standard number-conserving cellular automata. It is well-known that the property of being number-conserving is decidable in quasi-linear time. In this paper we prove that being number-decreasing is dimension sensi...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2005-11, Vol.345 (2), p.235-247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study number-decreasing cellular automata. They form a super-class of standard number-conserving cellular automata. It is well-known that the property of being number-conserving is decidable in quasi-linear time. In this paper we prove that being number-decreasing is dimension sensitive, i.e. it is decidable for one-dimensional cellular automata and undecidable for dimension 2 or greater. There are only few known examples of dimension sensitive properties for cellular automata and this denotes some rich panel of phenomena in this class. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2005.07.009 |