A new dimension sensitive property for cellular automata

In this paper we study number-decreasing cellular automata. They form a super-class of standard number-conserving cellular automata. It is well-known that the property of being number-conserving is decidable in quasi-linear time. In this paper we prove that being number-decreasing is dimension sensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2005-11, Vol.345 (2), p.235-247
Hauptverfasser: Bernardi, Vincent, Durand, Bruno, Formenti, Enrico, Kari, Jarkko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study number-decreasing cellular automata. They form a super-class of standard number-conserving cellular automata. It is well-known that the property of being number-conserving is decidable in quasi-linear time. In this paper we prove that being number-decreasing is dimension sensitive, i.e. it is decidable for one-dimensional cellular automata and undecidable for dimension 2 or greater. There are only few known examples of dimension sensitive properties for cellular automata and this denotes some rich panel of phenomena in this class.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2005.07.009