Mean-Field Phase Transitions in Tensorial Group Field Theory Quantum Gravity

Controlling the continuum limit and extracting effective gravitational physics are shared challenges for quantum gravity approaches based on quantum discrete structures. The description of quantum gravity in terms of tensorial group field theory (TGFT) has recently led to much progress in its applic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-04, Vol.130 (14), p.141501-141501, Article 141501
Hauptverfasser: Marchetti, Luca, Oriti, Daniele, Pithis, Andreas G A, Thürigen, Johannes
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling the continuum limit and extracting effective gravitational physics are shared challenges for quantum gravity approaches based on quantum discrete structures. The description of quantum gravity in terms of tensorial group field theory (TGFT) has recently led to much progress in its application to phenomenology, in particular, cosmology. This application relies on the assumption of a phase transition to a nontrivial vacuum (condensate) state describable by mean-field theory, an assumption that is difficult to corroborate by a full RG flow analysis due to the complexity of the relevant TGFT models. Here, we demonstrate that this assumption is justified due to the specific ingredients of realistic quantum geometric TGFT models: combinatorially nonlocal interactions, matter degrees of freedom, and Lorentz group data, together with the encoding of microcausality. This greatly strengthens the evidence for the existence of a meaningful continuum gravitational regime in group-field and spin-foam quantum gravity, the phenomenology of which is amenable to explicit computations in a mean-field approximation.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.130.141501