In-depth analysis of patterns in selection of different physiologically-based pharmacokinetic modeling tools: Part II - Assessment of model reusability and comparison between open and non-open source-code software
Whilst the reproducibility of models in the area of systems biology and quantitative systems pharmacology has been the focus of attention lately, the concept of 'reusability' is not addressed. With the advent of the 'Model Master File' dominating some regulatory discussions on ph...
Gespeichert in:
Veröffentlicht in: | Biopharmaceutics & drug disposition 2023-08, Vol.44 (4), p.292-300 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Whilst the reproducibility of models in the area of systems biology and quantitative systems pharmacology has been the focus of attention lately, the concept of 'reusability' is not addressed. With the advent of the 'Model Master File' dominating some regulatory discussions on pharmaceutical applications of physiologically-based pharmacokinetic (PBPK) models, reusability becomes a vital aspect of confidence in their use. Herein, we define 'reusability' specifically in the context of PBPK models and investigate the influence of open versus non-open source-code (NOSC) nature of the software on the extent of 'reusability'. Original articles (n = 145) that were associated with the development of novel PBPK models were identified as source models and citations to these reports, which involved further PBPK model development, were explored (n > 1800) for reuse cases of the source PBPK model whether in full or partial form. The nature of source-code was a major determinant of external reusability for PBPK models (>50% of the NOSC models as opposed |
---|---|
ISSN: | 0142-2782 1099-081X |
DOI: | 10.1002/bdd.2360 |