Compact Radiative Divertor Experiments at ASDEX Upgrade and Their Consequences for a Reactor
We present a novel concept to tackle the power exhaust challenge of a magnetically confined fusion plasma. It relies on the prior establishment of an X-point radiator that dissipates a large fraction of the exhaust power before it reaches the divertor targets. Despite the spatial proximity of the ma...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2023-04, Vol.130 (14), p.145102-145102, Article 145102 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel concept to tackle the power exhaust challenge of a magnetically confined fusion plasma. It relies on the prior establishment of an X-point radiator that dissipates a large fraction of the exhaust power before it reaches the divertor targets. Despite the spatial proximity of the magnetic X point to the confinement region, this singularity is far away from the hot fusion plasma in magnetic coordinates and therefore allows the coexistence of a cold and dense plasma with a high potential to radiate. In the compact radiative divertor (CRD) the target plates are placed close to this magnetic X point. We here report on high performance experiments in the ASDEX Upgrade tokamak that indicate the feasibility of this concept. Despite the shallow (projected) field line incidence angles of the order of θ_{⊥}=0.2°, no hot spots were observed on the target surface monitored by an IR camera, even at a maximum heating power of P_{heat}=15 MW. And even with the X point located exactly on the target surface and without density or impurity feedback control, the discharge remains stable, the confinement good (H_{98,y2}=1), hot spots absent, and the divertor in a detached state. In addition to its technical simplicity, the CRD scales beneficially to reactor-scale plasmas that would benefit from an increased volume of the confined plasma, more space for breeding blankets, smaller poloidal field coil currents, and-potentially-an increased vertical stability. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.130.145102 |