Predicting the spatiotemporal chlorophyll-a distribution in the Sea of Japan based on SeaWiFS ocean color satellite data

We developed a new statistical spatiotemporal model for chlorophyll-a (chl-a) distribution over the Sea of Japan, derived from the satellite-based Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Because preliminary analysis showed that the SeaWiFS data exhibit anisotropy in space and autocorrelatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2006-04, Vol.3 (2), p.212-216
Hauptverfasser: Kiyofuji, H., Hokimoto, T., Saitoh, S.-I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We developed a new statistical spatiotemporal model for chlorophyll-a (chl-a) distribution over the Sea of Japan, derived from the satellite-based Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Because preliminary analysis showed that the SeaWiFS data exhibit anisotropy in space and autocorrelation in time, we propose a new spatiotemporal model for chl-a distribution and its predictor. Numerical prediction experiments applying the SeaWiFS data showed that the predictor could forecast chl-a distributions in summer and early fall well, although further changes in the model structure will be necessary to predict aspects of the spring and late fall blooms.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2005.861931