Time-series analysis with neural networks and ARIMA-neural network hybrids
Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences. Statistical models have sound theoretical bases and have been successfully used in a number of problem domains. More recently, machine-learning models such as neural networks have bee...
Gespeichert in:
Veröffentlicht in: | Journal of experimental & theoretical artificial intelligence 2003-07, Vol.15 (3), p.315-330 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences. Statistical models have sound theoretical bases and have been successfully used in a number of problem domains. More recently, machine-learning models such as neural networks have been suggested as offering potential for time-series analysis. Results of neural network empirical testing have thus far been mixed. This paper proposes melding useful parameters from the statistical ARIMA model with neural networks of two types: multilevel perceptrons (MLPs) and radial basis functions (RBFs). Tests are run on a range of time-series problems that exhibit many common patterns encountered by analysts. The results suggest that hybrids of the type proposed may yield better outcomes than either model by itself. |
---|---|
ISSN: | 0952-813X 1362-3079 |
DOI: | 10.1080/0952813031000116488 |