CNT–MXene ultralight membranes: fabrication, surface nano/microstructure, 2D–3D stacking architecture, ion-transport mechanism, and potential application as interlayers for Li–O2 batteries
Multiwalled carbon nanotubes (MWCNTs) have shown effectiveness in improving the suitability of MXenes for energy-related applications. However, the ability of individually dispersed MWCNTs to control the structure of MXene-based macrostructures is unclear. Here, the correlation among composition, su...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-05, Vol.15 (18), p.8289-8303 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiwalled carbon nanotubes (MWCNTs) have shown effectiveness in improving the suitability of MXenes for energy-related applications. However, the ability of individually dispersed MWCNTs to control the structure of MXene-based macrostructures is unclear. Here, the correlation among composition, surface nano- and microstructure, MXenes’ stacking order, structural swelling, and Li-ion transport mechanisms and properties in individually dispersed MWCNT–Ti3C2 films was investigated. The compact surface microstructure of MXene film, characterized by prominent wrinkles, is dramatically changed as MWCNTs occupy MXene/MXene edge interfaces. The 2D stacking order is preserved up to 30 wt% MWCNTs despite a significant swelling of ∼400%. Such alignment is completely disrupted at 40 wt%, and a more pronounced surface opening and internal expansion of ∼770% are realized. Both 30 wt% and 40 wt% membranes show stable cycling performance under a significantly higher current density due to faster transport channels. Notably, for the 3D membrane, the overpotential during repeated Li deposition/dissolution reactions is further reduced by ∼50%. Ion-transport mechanisms in the absence and presence of MWCNTs are discussed. Furthermore, ultralight yet continuous hybrid films comprising up to ∼0.027 mg cm−2 Ti3C2 can be prepared using aqueous colloidal dispersions and vacuum filtration for specific applications. The potential application of such ultralight membranes as interlayers for Li–O2 batteries is briefly examined. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d3nr00712j |