House dust mite and Th2 cytokine-mediated epithelial barrier dysfunction attenuation by KL001 in 16-HBE cells

House dust mite (HDM) is a common aeroallergen that can disrupt the airway epithelial barrier leading to dysregulated immune response, resulting in allergic lung diseases such as asthma. Cryptochrome (CRY), a circadian clock gene, plays an important role in the regulation of metabolism, and immune r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue barriers 2024-01, Vol.12 (1), p.2203841-2203841
Hauptverfasser: Duraisamy, Santhosh Kumar, Srinivasan, Ashokkumar, Sundar, Isaac Kirubakaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:House dust mite (HDM) is a common aeroallergen that can disrupt the airway epithelial barrier leading to dysregulated immune response, resulting in allergic lung diseases such as asthma. Cryptochrome (CRY), a circadian clock gene, plays an important role in the regulation of metabolism, and immune response. It remains unclear whether stabilizing CRY using KL001 can attenuate HDM/Th2 cytokine-induced epithelial barrier dysfunction in 16-HBE cells. We evaluate the effect of KL001 (20 µM) pre-treatment (4 hrs) in HDM/Th2 cytokine (IL-4 or IL-13)-mediated change in epithelial barrier function. HDM and Th2 cytokine-induced changes in transepithelial electrical resistance (TEER) were determined by an xCELLigence real-time cell analyzer and delocalization of adherens junction complex (AJC: E-cadherin and β-catenin) and tight junction proteins (TJP: Occludin and Zonula occludens-1) by immunostaining and confocal microscopy. Finally, quantitative real-time PCR (qRT-PCR) and Western blotting were used to measure altered gene expression and protein abundance of the epithelial barrier function and core clock genes, respectively. HDM and Th2 cytokine treatment significantly decreased TEER associated with altered gene expression and protein abundance of the selected epithelial barrier function and circadian clock genes. However, pre-treatment with KL001 attenuated HDM and Th2 cytokine-induced epithelial barrier dysfunction as early as 12-24 hrs. KL001 pre-treatment showed attenuation of HDM and Th2 cytokine-induced alteration in the localization and gene expression of AJP and TJP (Cdh1, Ocln, and Zo1) and core clock genes (Clock, Arntl/Bmal1, Cry1/2, Per1/2, Nr1d1/Rev-erbα, and Nfil3). We demonstrate, for the first time, the protective role of KL001 in HDM and Th2 cytokine-mediated epithelial barrier dysfunction.
ISSN:2168-8370
2168-8370
DOI:10.1080/21688370.2023.2203841