Learning deterministic finite automata with a smart state labeling evolutionary algorithm

Learning a deterministic finite automaton (DFA) from a training set of labeled strings is a hard task that has been much studied within the machine learning community. It is equivalent to learning a regular language by example and has applications in language modeling. In this paper, we describe a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2005-07, Vol.27 (7), p.1063-1074
Hauptverfasser: Lucas, S.M., Reynolds, T.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning a deterministic finite automaton (DFA) from a training set of labeled strings is a hard task that has been much studied within the machine learning community. It is equivalent to learning a regular language by example and has applications in language modeling. In this paper, we describe a novel evolutionary method for learning DFA that evolves only the transition matrix and uses a simple deterministic procedure to optimally assign state labels. We compare its performance with the evidence driven state merging (EDSM) algorithm, one of the most powerful known DFA learning algorithms. We present results on random DFA induction problems of varying target size and training set density. We also study the effects of noisy training data on the evolutionary approach and on EDSM. On noise-free data, we find that our evolutionary method outperforms EDSM on small sparse data sets. In the case of noisy training data, we find that our evolutionary method consistently outperforms EDSM, as well as other significant methods submitted to two recent competitions.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2005.143