The use of stream flow routing for direct channel precipitation with isotopically-based hydrograph separations: the role of new water in stormflow generation
Understanding the pathways by which event water contributes to stream stormflow provides insight into stormflow generation mechanisms. We analyze the impact of storm size on the relative contribution of event water to stormflow by using natural variations in the oxygen isotopic composition of precip...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2003-03, Vol.273 (1), p.205-216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding the pathways by which event water contributes to stream stormflow provides insight into stormflow generation mechanisms. We analyze the impact of storm size on the relative contribution of event water to stormflow by using natural variations in the oxygen isotopic composition of precipitation and stream water to separate multiple stormflow hydrographs from a single fourth-order, 1212
ha catchment. We extend previous isotope-based hydrograph separations by independently accounting for the contribution of event water via direct channel precipitation to the stream hydrograph. The direct channel precipitation contribution is determined using a numerical model of stream flow routing though the catchment, taking precipitation and digital elevation data as input variables. For the range of storm sizes sampled, having recurrence intervals ranging from less than a week to ∼4 months, essentially all the event water in stream stormflow can be attributed to direct channel precipitation. Event water not directly falling on the stream channel indirectly contributes to stormflow by increasing the subsurface discharge of pre-event water to the stream. Neither the hydrograph separation data, field observations during the precipitation events, nor experimental observations of flow in a large-scale natural soil column extracted from the watershed are consistent with macropore flow or groundwater ridging as the primary mechanism responsible for increasing subsurface discharge. Results from a series of artificial rain experiments using the unsaturated natural soil column are consistent with a preferential kinematic flow model and indicate that the discharge of pre-event water to the stream during a storm event may be controlled by kinematic flow processes within the watershed soils. |
---|---|
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/S0022-1694(02)00392-X |