New insights into the properties, functions, and aging of skeletal stem cells
Bone-related diseases pose a major health burden for modern society. Bone is one of the organs that rely on stem cell function to maintain tissue homeostasis. Stem cell therapy has emerged as an effective new strategy to repair and replace damaged tissue. Although research on bone marrow mesenchymal...
Gespeichert in:
Veröffentlicht in: | Osteoporosis international 2023-08, Vol.34 (8), p.1311-1321 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bone-related diseases pose a major health burden for modern society. Bone is one of the organs that rely on stem cell function to maintain tissue homeostasis. Stem cell therapy has emerged as an effective new strategy to repair and replace damaged tissue. Although research on bone marrow mesenchymal stem cells has been conducted over the last few decades, the identity and definition of the true skeletal stem cell population remains controversial. Due to technological advances, some progress has been made in the prospective separation and function research of purified skeletal stem cells. Here, we reviewed the recent progress of highly purified skeletal stem cells, their function in bone development and repair, and the impact of aging on skeletal stem cells. Various studies on animal and human models distinguished and isolated skeletal stem cells using different surface markers based on flow-cytometry-activated cell sorting. The roles of different types of skeletal stem cells in bone growth, remodeling, and repair are gradually becoming clear. Thanks to technological advances, SSCs can be specifically identified and purified for functional testing and molecular analysis. The basic features of SSCs and their roles in bone development and repair and the effects of aging on SSCs are gradually being elucidated. Future mechanistic studies can help to develop new therapeutic interventions to improve various types of skeletal diseases and enhance the regenerative potential of SSCs. |
---|---|
ISSN: | 0937-941X 1433-2965 |
DOI: | 10.1007/s00198-023-06736-4 |