Precisely Orientating Atomic Array in One-Dimension Tellurium Microneedles Enhances Intrinsic Piezoelectricity for an Efficient Piezo-Catalytic Sterilization

Comprehensively understanding the interdependency between the orientated atomic array and intrinsic piezoelectricity in one-dimension (1D) tellurium (Te) crystals will greatly benefit their practical piezo-catalytic applications. Herein, we successfully synthesized the various 1D Te microneedles by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-05, Vol.17 (9), p.8755-8766
Hauptverfasser: Lian, Qiyu, Liu, Weiqi, Ma, Dingren, Liang, Zhuocheng, Tang, Zhuoyun, Cao, Jing, He, Chun, Xia, Dehua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comprehensively understanding the interdependency between the orientated atomic array and intrinsic piezoelectricity in one-dimension (1D) tellurium (Te) crystals will greatly benefit their practical piezo-catalytic applications. Herein, we successfully synthesized the various 1D Te microneedles by precisely orientating the atomic growth orientation by tuning (100)/(110) planes ratios (Te-0.6, Te-0.3, Te-0.4) to reveal the secrets of piezoelectricity. Explicitly, the theoretical simulations and experimental results have solidly validated that the Te-0.6 microneedle grown along the [110] orientation possesses a stronger asymmetric distribution of Te atoms array causing the enhanced dipole moment and in-plane polarization, which boosts a higher transfer and separation efficiency of the electron and hole pairs and a higher piezoelectric potential under the same stress. Additionally, the orientated atomic array along the [110] has p antibonding states with a higher energy level, resulting in a higher CB potential and a broadened band gap. Meanwhile, it also has a much lower barrier toward the valid adsorption of H2O and O2 molecules over other orientations, effectively conducive to the production of reactive oxygen species (ROS) for the efficient piezo-catalytic sterilization. Therefore, this study not only broadens the fundamental perspectives in understanding the intrinsic mechanism of piezoelectricity in 1D Te crystals but also provides a candidate 1D Te microneedle for practical piezo-catalytic applications.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.3c02044