Effects of interstitial oxygen defects at HfO/sub x/N/sub y//Si interface on electrical characteristics of MOS devices
Effects of the defects at high-/spl kappa/ dielectric/Si interface on the electrical characteristics of MOS devices are important issues. To study these issues, a low defect (denuded zone) at Si surface was formed by a high-temperature annealing in hydrogen atmosphere in this paper. Our results reve...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2006-01, Vol.53 (1), p.63-70 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effects of the defects at high-/spl kappa/ dielectric/Si interface on the electrical characteristics of MOS devices are important issues. To study these issues, a low defect (denuded zone) at Si surface was formed by a high-temperature annealing in hydrogen atmosphere in this paper. Our results reveal that HfO/sub x/N/sub y/ demonstrates significant improvement on the electrical properties of MOS devices due to its low amount of the interstitial oxygen [O/sub i/] and the crystal-originated particles defects as well as small surface roughness at HfO/sub x/N/sub y//Si interface. The current-conduction mechanism of the HfO/sub x/N/sub y/ film at the low- and high-electrical field and high-temperature (T>100/spl deg/C) is dominated by Schottky emission and Frenkel-Poole (FP) emission, respectively. The trap energy level involved in FP conduction was estimated to be around 0.5eV. Reduced gate leakage current, stress-induced leakage current and defect generation rate, attributable to the reduction of defects at HfO/sub x/N/sub y//Si interface, were observed for devices with denuded zone. The variable rise and fall time bipolar-pulse-induced current technique was used to determine the energy distribution of interface trap density (D/sub it/). The results exhibit that relatively low D/sub it/ can be attributed to the reduction of defects at Si surface. By using denuded zone at the Si surface, HfO/sub x/N/sub y/ has demonstrated significant improvement on electrical properties as compared to SiO/sub x/N/sub y/. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2005.860660 |