High-performance direct digital frequency synthesizers using piecewise-polynomial approximation

This paper presents new techniques to implement direct digital frequency synthesizers (DDFSs) with optimized piecewise-polynomial approximation. DDFS performances with piecewise-polynomial approximation are first analyzed, providing theoretical upperbounds for the spurious-free dynamic range (SFDR),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 1, Fundamental theory and applications Fundamental theory and applications, 2005-02, Vol.52 (2), p.324-337
Hauptverfasser: De Caro, D., Strollo, A.G.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents new techniques to implement direct digital frequency synthesizers (DDFSs) with optimized piecewise-polynomial approximation. DDFS performances with piecewise-polynomial approximation are first analyzed, providing theoretical upperbounds for the spurious-free dynamic range (SFDR), the maximum absolute error, and the signal-to-noise ratio. A novel approach to evaluate, with reduced computational effort, the near optimal fixed-point coefficients which maximize the SFDR is described. Several piecewise-linear and quadratic DDFS are implemented in the paper by using novel, single-summation-tree architectures. The tradeoff between ROM and arithmetic circuits complexity is discussed, pointing out that a sensible silicon area reduction can be achieved by increasing ROM size and reducing arithmetic circuitry. The use of fixed-width arithmetic can be combined with the single-summation-tree approach to further increase performances. It is shown that piecewise-quadratic DDFSs become effective against piecewise-linear designs for an SFDR higher than 100 dBc. Third-order DDFSs are expected to give advantages for an SFDR higher than 180 dBc. The DDFS circuits proposed in this paper compare favorably with previously proposed approaches.
ISSN:1549-8328
1057-7122
1558-0806
DOI:10.1109/TCSI.2004.841592