Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells

In recent years, organic‐inorganic halide perovskites are now emerging as the most attractive alternatives for next‐generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-12, Vol.35 (52), p.e2302552-n/a
Hauptverfasser: Zhong, Yang, Yang, Jia, Wang, Xueying, Liu, Yikun, Cai, Qianqian, Tan, Licheng, Chen, Yiwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, organic‐inorganic halide perovskites are now emerging as the most attractive alternatives for next‐generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop “state‐of‐the‐art” PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized. The resultant perovskite solar cells are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. This review aims to provide a thorough understanding of the origin of ion migration and the action of effective inhibition strategies that are essential for the development of “state‐of‐the‐art” perovskite solar cells with high intrinsic stability to accelerate commercialization.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202302552