Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer
Air quality prediction plays an important role in preventing air pollution and improving living environment. For this prediction, many indicators can be employed to reflect the air quality, among which air quality index (AQI) is the most commonly used. However, existing methods are relatively simple...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-05, Vol.30 (23), p.64416-64442 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64442 |
---|---|
container_issue | 23 |
container_start_page | 64416 |
container_title | Environmental science and pollution research international |
container_volume | 30 |
creator | Song, Qixian Zou, Jing Xu, Min Xi, Mingyang Zhou, Zhaorong |
description | Air quality prediction plays an important role in preventing air pollution and improving living environment. For this prediction, many indicators can be employed to reflect the air quality, among which air quality index (AQI) is the most commonly used. However, existing methods are relatively simple and the corresponding prediction accuracy needs to be improved. Particularly, the prediction accuracy is affected by the parameter selection of methods, and the corresponding optimization problems are usually non-convex and multi-modal. Therefore, based on long short-term memory (LSTM) neural network with improved jellyfish search optimizer (IJSO), a novel hybrid model denoted by IJSO-LSTM is proposed to predict AQI for Chengdu. In order to evaluate the optimizing ability of IJSO, other variants of jellyfish search optimizer as well as other state-of-the-art meta-heuristic algorithms are applied to optimize the hyperparameters of LSTM neural network for comparison, and the results confirm that IJSO is more suitable for optimizing LSTM neural network. In addition, compared with other well-known models, the results demonstrate IJSO-LSTM has higher prediction accuracy with root-mean-square error, mean absolute error, and mean absolute percentage error controlling below 4, 3, and 4%, respectively. |
doi_str_mv | 10.1007/s11356-023-26782-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2802423203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811778376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-45f952d95907420e4ddf29d32168e0c2aefda2e7d44e1ee568c224a3638e18853</originalsourceid><addsrcrecordid>eNqFkU2PFCEQhonRuOvqH_BgSLx4aYWCBvq4mawfySZe9EzYpnqasbuZBdrNzK8XnfUjHjQhKUI970tVXkKec_aaM6bfZM5FqxoGogGlDTTHB-ScKy4bLbvu4R_3M_Ik5x1jwDrQj8mZ0ExpzdU5OV6GRG9XN4VyoPuEPvQlxIUOMdHNiMvWr_TGZfS0Pk5x2dI8xlSagmmmM84xHeiCa3JTLeUupi_0LpSRhnmf4tcq2-E0HYaQR5rRpX6kcV_CHI6YnpJHg5syPruvF-Tz26tPm_fN9cd3HzaX100vmSmNbIeuBd-1HdMSGErvB-i8AK4Msh4cDt4Bai8lcsRWmR5AOqGEQW5MKy7Iq5Nvneh2xVzsHHJfx3ILxjVbwdt6mGm7_6JgGEgQwERFX_6F7uKalrpIpTjX2gitKgUnqk8x54SD3acwu3SwnNnvIdpTiLaGaH-EaI9V9OLeer2Z0f-S_EytAuIE5Npatph-__0P228T06kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811778376</pqid></control><display><type>article</type><title>Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Song, Qixian ; Zou, Jing ; Xu, Min ; Xi, Mingyang ; Zhou, Zhaorong</creator><creatorcontrib>Song, Qixian ; Zou, Jing ; Xu, Min ; Xi, Mingyang ; Zhou, Zhaorong</creatorcontrib><description>Air quality prediction plays an important role in preventing air pollution and improving living environment. For this prediction, many indicators can be employed to reflect the air quality, among which air quality index (AQI) is the most commonly used. However, existing methods are relatively simple and the corresponding prediction accuracy needs to be improved. Particularly, the prediction accuracy is affected by the parameter selection of methods, and the corresponding optimization problems are usually non-convex and multi-modal. Therefore, based on long short-term memory (LSTM) neural network with improved jellyfish search optimizer (IJSO), a novel hybrid model denoted by IJSO-LSTM is proposed to predict AQI for Chengdu. In order to evaluate the optimizing ability of IJSO, other variants of jellyfish search optimizer as well as other state-of-the-art meta-heuristic algorithms are applied to optimize the hyperparameters of LSTM neural network for comparison, and the results confirm that IJSO is more suitable for optimizing LSTM neural network. In addition, compared with other well-known models, the results demonstrate IJSO-LSTM has higher prediction accuracy with root-mean-square error, mean absolute error, and mean absolute percentage error controlling below 4, 3, and 4%, respectively.</description><identifier>ISSN: 1614-7499</identifier><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-023-26782-z</identifier><identifier>PMID: 37067716</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Air Pollution ; Air quality ; Algorithms ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Cnidaria ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Errors ; Heuristic methods ; Long short-term memory ; Memory, Short-Term ; Neural networks ; Neural Networks, Computer ; Optimization ; Outdoor air quality ; Pollution prevention ; prediction ; Predictions ; Research Article ; Scyphozoa ; Searching ; Short term ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2023-05, Vol.30 (23), p.64416-64442</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-45f952d95907420e4ddf29d32168e0c2aefda2e7d44e1ee568c224a3638e18853</citedby><cites>FETCH-LOGICAL-c408t-45f952d95907420e4ddf29d32168e0c2aefda2e7d44e1ee568c224a3638e18853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-023-26782-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-023-26782-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37067716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Qixian</creatorcontrib><creatorcontrib>Zou, Jing</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Xi, Mingyang</creatorcontrib><creatorcontrib>Zhou, Zhaorong</creatorcontrib><title>Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Air quality prediction plays an important role in preventing air pollution and improving living environment. For this prediction, many indicators can be employed to reflect the air quality, among which air quality index (AQI) is the most commonly used. However, existing methods are relatively simple and the corresponding prediction accuracy needs to be improved. Particularly, the prediction accuracy is affected by the parameter selection of methods, and the corresponding optimization problems are usually non-convex and multi-modal. Therefore, based on long short-term memory (LSTM) neural network with improved jellyfish search optimizer (IJSO), a novel hybrid model denoted by IJSO-LSTM is proposed to predict AQI for Chengdu. In order to evaluate the optimizing ability of IJSO, other variants of jellyfish search optimizer as well as other state-of-the-art meta-heuristic algorithms are applied to optimize the hyperparameters of LSTM neural network for comparison, and the results confirm that IJSO is more suitable for optimizing LSTM neural network. In addition, compared with other well-known models, the results demonstrate IJSO-LSTM has higher prediction accuracy with root-mean-square error, mean absolute error, and mean absolute percentage error controlling below 4, 3, and 4%, respectively.</description><subject>Accuracy</subject><subject>Air Pollution</subject><subject>Air quality</subject><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Cnidaria</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Errors</subject><subject>Heuristic methods</subject><subject>Long short-term memory</subject><subject>Memory, Short-Term</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optimization</subject><subject>Outdoor air quality</subject><subject>Pollution prevention</subject><subject>prediction</subject><subject>Predictions</subject><subject>Research Article</subject><subject>Scyphozoa</subject><subject>Searching</subject><subject>Short term</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1614-7499</issn><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU2PFCEQhonRuOvqH_BgSLx4aYWCBvq4mawfySZe9EzYpnqasbuZBdrNzK8XnfUjHjQhKUI970tVXkKec_aaM6bfZM5FqxoGogGlDTTHB-ScKy4bLbvu4R_3M_Ik5x1jwDrQj8mZ0ExpzdU5OV6GRG9XN4VyoPuEPvQlxIUOMdHNiMvWr_TGZfS0Pk5x2dI8xlSagmmmM84xHeiCa3JTLeUupi_0LpSRhnmf4tcq2-E0HYaQR5rRpX6kcV_CHI6YnpJHg5syPruvF-Tz26tPm_fN9cd3HzaX100vmSmNbIeuBd-1HdMSGErvB-i8AK4Msh4cDt4Bai8lcsRWmR5AOqGEQW5MKy7Iq5Nvneh2xVzsHHJfx3ILxjVbwdt6mGm7_6JgGEgQwERFX_6F7uKalrpIpTjX2gitKgUnqk8x54SD3acwu3SwnNnvIdpTiLaGaH-EaI9V9OLeer2Z0f-S_EytAuIE5Npatph-__0P228T06kg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Song, Qixian</creator><creator>Zou, Jing</creator><creator>Xu, Min</creator><creator>Xi, Mingyang</creator><creator>Zhou, Zhaorong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230501</creationdate><title>Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer</title><author>Song, Qixian ; Zou, Jing ; Xu, Min ; Xi, Mingyang ; Zhou, Zhaorong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-45f952d95907420e4ddf29d32168e0c2aefda2e7d44e1ee568c224a3638e18853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Air Pollution</topic><topic>Air quality</topic><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Cnidaria</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Errors</topic><topic>Heuristic methods</topic><topic>Long short-term memory</topic><topic>Memory, Short-Term</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optimization</topic><topic>Outdoor air quality</topic><topic>Pollution prevention</topic><topic>prediction</topic><topic>Predictions</topic><topic>Research Article</topic><topic>Scyphozoa</topic><topic>Searching</topic><topic>Short term</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Qixian</creatorcontrib><creatorcontrib>Zou, Jing</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Xi, Mingyang</creatorcontrib><creatorcontrib>Zhou, Zhaorong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Qixian</au><au>Zou, Jing</au><au>Xu, Min</au><au>Xi, Mingyang</au><au>Zhou, Zhaorong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>30</volume><issue>23</issue><spage>64416</spage><epage>64442</epage><pages>64416-64442</pages><issn>1614-7499</issn><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Air quality prediction plays an important role in preventing air pollution and improving living environment. For this prediction, many indicators can be employed to reflect the air quality, among which air quality index (AQI) is the most commonly used. However, existing methods are relatively simple and the corresponding prediction accuracy needs to be improved. Particularly, the prediction accuracy is affected by the parameter selection of methods, and the corresponding optimization problems are usually non-convex and multi-modal. Therefore, based on long short-term memory (LSTM) neural network with improved jellyfish search optimizer (IJSO), a novel hybrid model denoted by IJSO-LSTM is proposed to predict AQI for Chengdu. In order to evaluate the optimizing ability of IJSO, other variants of jellyfish search optimizer as well as other state-of-the-art meta-heuristic algorithms are applied to optimize the hyperparameters of LSTM neural network for comparison, and the results confirm that IJSO is more suitable for optimizing LSTM neural network. In addition, compared with other well-known models, the results demonstrate IJSO-LSTM has higher prediction accuracy with root-mean-square error, mean absolute error, and mean absolute percentage error controlling below 4, 3, and 4%, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37067716</pmid><doi>10.1007/s11356-023-26782-z</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-7499 |
ispartof | Environmental science and pollution research international, 2023-05, Vol.30 (23), p.64416-64442 |
issn | 1614-7499 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2802423203 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Accuracy Air Pollution Air quality Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Cnidaria Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Errors Heuristic methods Long short-term memory Memory, Short-Term Neural networks Neural Networks, Computer Optimization Outdoor air quality Pollution prevention prediction Predictions Research Article Scyphozoa Searching Short term Waste Water Technology Water Management Water Pollution Control |
title | Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air%20quality%20prediction%20for%20Chengdu%20based%20on%20long%20short-term%20memory%20neural%20network%20with%20improved%20jellyfish%20search%20optimizer&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Song,%20Qixian&rft.date=2023-05-01&rft.volume=30&rft.issue=23&rft.spage=64416&rft.epage=64442&rft.pages=64416-64442&rft.issn=1614-7499&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-023-26782-z&rft_dat=%3Cproquest_cross%3E2811778376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811778376&rft_id=info:pmid/37067716&rfr_iscdi=true |