Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer

Air quality prediction plays an important role in preventing air pollution and improving living environment. For this prediction, many indicators can be employed to reflect the air quality, among which air quality index (AQI) is the most commonly used. However, existing methods are relatively simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2023-05, Vol.30 (23), p.64416-64442
Hauptverfasser: Song, Qixian, Zou, Jing, Xu, Min, Xi, Mingyang, Zhou, Zhaorong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Air quality prediction plays an important role in preventing air pollution and improving living environment. For this prediction, many indicators can be employed to reflect the air quality, among which air quality index (AQI) is the most commonly used. However, existing methods are relatively simple and the corresponding prediction accuracy needs to be improved. Particularly, the prediction accuracy is affected by the parameter selection of methods, and the corresponding optimization problems are usually non-convex and multi-modal. Therefore, based on long short-term memory (LSTM) neural network with improved jellyfish search optimizer (IJSO), a novel hybrid model denoted by IJSO-LSTM is proposed to predict AQI for Chengdu. In order to evaluate the optimizing ability of IJSO, other variants of jellyfish search optimizer as well as other state-of-the-art meta-heuristic algorithms are applied to optimize the hyperparameters of LSTM neural network for comparison, and the results confirm that IJSO is more suitable for optimizing LSTM neural network. In addition, compared with other well-known models, the results demonstrate IJSO-LSTM has higher prediction accuracy with root-mean-square error, mean absolute error, and mean absolute percentage error controlling below 4, 3, and 4%, respectively.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-26782-z