Efficient texture analysis of SAR imagery

We address the problem of efficiency in texture analysis for synthetic aperture radar (SAR) imagery. Motivated by the statistical occupancy model, we introduce the notion of patch reoccurrences. Using the reoccurrences, we propose the use of approximate textural features in analysis of SAR images. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2005-09, Vol.43 (9), p.2075-2083
Hauptverfasser: Kandaswamy, U., Adjeroh, D.A., Lee, M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the problem of efficiency in texture analysis for synthetic aperture radar (SAR) imagery. Motivated by the statistical occupancy model, we introduce the notion of patch reoccurrences. Using the reoccurrences, we propose the use of approximate textural features in analysis of SAR images. We describe how the proposed approximate features can be extracted for two popular texture analysis methods-the gray-level cooccurrence matrix and Gabor wavelets. Results on image texture classification show that the proposed method can provide an improved efficiency in the analysis of SAR imagery, without introducing any significant degradation in the classification results.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2005.852768