The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications
We consider the class USk of uniformly k-sparse simple graphs, i.e., the class of finite or countable simple graphs, every finite subgraph of which has a number of edges bounded by k times the number of vertices. We prove that for each k, every monadic second-order formula (intended to express a gra...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2003-04, Vol.299 (1-3), p.1-36 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the class USk of uniformly k-sparse simple graphs, i.e., the class of finite or countable simple graphs, every finite subgraph of which has a number of edges bounded by k times the number of vertices. We prove that for each k, every monadic second-order formula (intended to express a graph property) that uses variables denoting sets of edges can be effectively translated into a monadic second-order formula where all set variables denote sets of vertices and that expresses the same property of the graphs in USk. This result extends to the class of uniformly k-sparse simple hypergraphs of rank at most m (for any k and m).
It follows that every subclass of USk consisting of finite graphs of bounded clique-width has bounded tree-width. Clique-width is a graph complexity measure similar to tree-width and relevant to the construction of polynomial algorithms for NP-complete problems on special classes of graphs. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/S0304-3975(02)00578-9 |