Significant roles of surface functional groups and Fe/Co redox reactions on peroxymonosulfate activation by hydrochar-supported cobalt ferrite for simultaneous degradation of monochlorobenzene and p-chloroaniline
CoFe2O4/hydrochar composites (FeCo@HC) were synthesized via a facile one-step hydrothermal method and utilized to activate peroxymonosulfate (PMS) for simultaneous degradation of monochlorobenzene (MCB) and p-chloroaniline (PCA). Additionally, the effects of humic acid, Cl-, HCO3-, H2PO4-, HPO42- an...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2023-03, Vol.445, p.130588-130588, Article 130588 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CoFe2O4/hydrochar composites (FeCo@HC) were synthesized via a facile one-step hydrothermal method and utilized to activate peroxymonosulfate (PMS) for simultaneous degradation of monochlorobenzene (MCB) and p-chloroaniline (PCA). Additionally, the effects of humic acid, Cl-, HCO3-, H2PO4-, HPO42- and water matrices were investigated and degradation pathways of MCB and PCA were proposed. The removal efficiencies of MCB and PCA were higher in FeCo@HC140–10/PMS system obtained under hydrothermal temperature of 140 °C than FeCo@HC180–10/PMS and FeCo@HC220–10/PMS systems obtained under higher temperatures. Radical species (i.e., SO4•-, •OH) and nonradical pathways (i.e., 1O2, Fe (IV)/Co (IV) and electron transfer through surface FeCo@HC140–10/PMS* complex) co-occurred in the FeCo@HC140–10/PMS system, while radical and nonradical pathways were dominant in degrading MCB and PCA respectively. The surface functional groups (i.e., C-OH and CO) and Fe/Co redox cycles played crucial roles in the PMS activation. MCB degradation was significantly inhibited in the mixed MCB/PCA solution over that in the single MCB solution, whereas PCA degradation was slightly promoted in the mixed MCB/PCA solution. These findings are significant for the provision of a low-cost and environmentally-benign synthesis of bimetal-hydrochar composites and more detailed understanding of the related mechanisms on PMS activation for simultaneous removal of the mixed contaminants in groundwater.
[Display omitted]
•CoFe2O4/hydrochar-PMS for removing mixed MCB/PCA in groundwater was studied.•Surface functional groups and Fe/Co redox cycles were crucial for PMS activation.•SO4•-, •OH, Fe(IV)/Co(IV), 1O2 and electron transfer co-occurred during activation.•Radical and nonradical pathways dominated in degrading MCB and PCA respectively.•Inhibited MCB and enhanced PCA removal were shown in the mixed contaminant solution. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.130588 |