The influence of polar-cap convection on the geoelectric field at Vostok, Antarctica

Vertical geoelectric field measurements at Vostok, Antarctica ( 78.5° S, 107° E ; corrected geomagnetic latitude, 83.4°S) made during 1998 are compared with both Weimer (1996) and IZMEM (1994) model calculations of the solar-wind-induced, polar-cap potential differences with respect to the station....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and solar-terrestrial physics 2003-02, Vol.65 (3), p.345-354
Hauptverfasser: Corney, R.C., Burns, G.B., Michael, K., Frank-Kamenetsky, A.V., Troshichev, O.A., Bering, E.A., Papitashvili, V.O., Breed, A.M., Duldig, M.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vertical geoelectric field measurements at Vostok, Antarctica ( 78.5° S, 107° E ; corrected geomagnetic latitude, 83.4°S) made during 1998 are compared with both Weimer (1996) and IZMEM (1994) model calculations of the solar-wind-induced, polar-cap potential differences with respect to the station. By investigating the correlations between these parameters for individual UT hours, we confirm and extend the diurnal range over which significant correlations have been obtained. Nineteen individual UT hours are significantly correlated with the Weimer model predictions and nine with the IZMEM model predictions. Diurnal variation in the slopes of the linear regressions allows us to comment on each model, demonstrating that Antarctic polar plateau geoelectric field measurements can be used to investigate polar convection. Seasonal variations in the diurnal electric field variations at Vostok are compared with the Carnegie global electric circuit diurnal curves, after allowance is made for the solar-wind-induced, polar-cap potential difference patterns.
ISSN:1364-6826
1879-1824
DOI:10.1016/S1364-6826(02)00225-0