Noble-Metal-Free FeMn-N-C catalyst for efficient oxygen reduction reaction in both alkaline and acidic media

[Display omitted] The oxygen reduction reaction (ORR) is important cathodic reaction running in several electrochemical energy conversion devices. It is still difficult to develop non-precious nanocatalysts for ORR that have high activity and increased durability for practical application. Herein, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-07, Vol.642, p.800-809
Hauptverfasser: Zhao, Shuaili, Ma, Zizai, Wan, Zihao, Li, Jinping, Wang, Xiaoguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The oxygen reduction reaction (ORR) is important cathodic reaction running in several electrochemical energy conversion devices. It is still difficult to develop non-precious nanocatalysts for ORR that have high activity and increased durability for practical application. Herein, bimetallic FeMn(mIm)-N-C composite incorporated with Fe and Mn via an encapsulation-ligand exchange technique is prepared and established as an efficient ORR catalyst. The results reveal that FeMn(mIm)-N-C shows outstanding ORR performance with E1/2 of 0.861 V and 0.778 V in alkaline and acid solutions, along with robust durability. Additionally, the assembled Zn-Air batteries (ZAB) and proton exchange membrane fuel cells (PEMFCs) both have exceptional power densities and show promise for long-term stability compared to 20% Pt/C. The present work provides a useful strategy for designing and synthesizing a reliable low-cost and high-efficient electrocatalysts for energy conversion and storage.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.03.206