Privacy-preserving artificial intelligence in healthcare: Techniques and applications

There has been an increasing interest in translating artificial intelligence (AI) research into clinically-validated applications to improve the performance, capacity, and efficacy of healthcare services. Despite substantial research worldwide, very few AI-based applications have successfully made i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2023-05, Vol.158, p.106848-106848, Article 106848
Hauptverfasser: Khalid, Nazish, Qayyum, Adnan, Bilal, Muhammad, Al-Fuqaha, Ala, Qadir, Junaid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been an increasing interest in translating artificial intelligence (AI) research into clinically-validated applications to improve the performance, capacity, and efficacy of healthcare services. Despite substantial research worldwide, very few AI-based applications have successfully made it to clinics. Key barriers to the widespread adoption of clinically validated AI applications include non-standardized medical records, limited availability of curated datasets, and stringent legal/ethical requirements to preserve patients’ privacy. Therefore, there is a pressing need to improvise new data-sharing methods in the age of AI that preserve patient privacy while developing AI-based healthcare applications. In the literature, significant attention has been devoted to developing privacy-preserving techniques and overcoming the issues hampering AI adoption in an actual clinical environment. To this end, this study summarizes the state-of-the-art approaches for preserving privacy in AI-based healthcare applications. Prominent privacy-preserving techniques such as Federated Learning and Hybrid Techniques are elaborated along with potential privacy attacks, security challenges, and future directions. •A comprehensive overview of AI healthcare privacy concerns is presented.•Vulnerabilities across the AI healthcare pipeline are highlighted.•A taxonomy of various privacy preserving techniques is provided.•Limitations of privacy-preserving techniques and open research questions are highlighted.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2023.106848