A generalization of repetition threshold

Brandenburg and (implicitly) Dejean introduced the concept of repetition threshold: the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β -powers for all β > α . We generalize this concept to include the lengths of the avoided words. We give som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2005-11, Vol.345 (2), p.359-369
Hauptverfasser: Ilie, Lucian, Ochem, Pascal, Shallit, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brandenburg and (implicitly) Dejean introduced the concept of repetition threshold: the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β -powers for all β > α . We generalize this concept to include the lengths of the avoided words. We give some conjectures supported by numerical evidence and prove some of these conjectures. As a consequence of one of our results, we show that the pattern ABCBABC is 2-avoidable. This resolves a question left open in Cassaigne's thesis.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2005.07.016