A generalization of repetition threshold
Brandenburg and (implicitly) Dejean introduced the concept of repetition threshold: the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β -powers for all β > α . We generalize this concept to include the lengths of the avoided words. We give som...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2005-11, Vol.345 (2), p.359-369 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Brandenburg and (implicitly) Dejean introduced the concept of
repetition threshold: the smallest real number
α
such that there exists an infinite word over a
k-letter alphabet that avoids
β
-powers for all
β
>
α
. We generalize this concept to include the lengths of the avoided words. We give some conjectures supported by numerical evidence and prove some of these conjectures. As a consequence of one of our results, we show that the pattern
ABCBABC is 2-avoidable. This resolves a question left open in Cassaigne's thesis. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2005.07.016 |