Stretchable Low-Impedance Conductor with Ag–Au–Pt Core–Shell–Shell Nanowires and in Situ Formed Pt Nanoparticles for Wearable and Implantable Device

Mechanically soft metallic nanocomposites have gained much attention as a key material for intrinsically stretchable biointegrated devices. However, it has been challenging to develop a stretchable conductive nanocomposite with all the desired material characteristics including high conductivity, hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-04, Vol.17 (8), p.7550-7561
Hauptverfasser: Sunwoo, Sung-Hyuk, Han, Sang Ihn, Jung, Dongjun, Kim, Minseong, Nam, Seonghyeon, Lee, Hyunjin, Choi, Suji, Kang, Hyejeong, Cho, Ye Seul, Yeom, Da-Hae, Cha, Myung-Jin, Lee, Seunghwan, Lee, Seung-Pyo, Hyeon, Taeghwan, Kim, Dae-Hyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanically soft metallic nanocomposites have gained much attention as a key material for intrinsically stretchable biointegrated devices. However, it has been challenging to develop a stretchable conductive nanocomposite with all the desired material characteristics including high conductivity, high stretchability, low cytotoxicity, and low impedance. Here, we present a material strategy for the stretchable conductive nanocomposite, particularly emphasizing low impedance, by combining silver–gold–platinum core–shell–shell nanowires and homogeneously dispersed in situ synthesized platinum nanoparticles (Pt NPs). The highly embossed structure of the outermost Pt shell, together with the intrinsic electrical property of Pt, contributes to minimizing the impedance. The gold–platinum double-layer sheath prevents leaching of cytotoxic Ag ions, thus improving biocompatibility. Homogeneously dispersed Pt NPs, synthesized in situ during fabrication of the nanocomposite, simultaneously enhance conductivity, reduce impedance, and improve stretchability by supporting the percolation network formation. This intrinsically stretchable nanocomposite conductor can be applied to wearable and implantable bioelectronics for recording biosignals and delivering electrical stimulations in vivo.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c12659