Large-Scale Virtual Screening for the Discovery of SARS-CoV‑2 Papain-like Protease (PLpro) Non-covalent Inhibitors

The rapid global spread of the SARS-CoV-2 virus facilitated the development of novel direct-acting antiviral agents (DAAs). The papain-like protease (PLpro) has been proposed as one of the major SARS-CoV-2 targets for DAAs due to its dual role in processing viral proteins and facilitating the host’s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2023-04, Vol.63 (7), p.2158-2169
Hauptverfasser: Garland, Olivia, Ton, Anh-Tien, Moradi, Shoeib, Smith, Jason R., Kovacic, Suzana, Ng, Kurtis, Pandey, Mohit, Ban, Fuqiang, Lee, Jaeyong, Vuckovic, Marija, Worrall, Liam J., Young, Robert N., Pantophlet, Ralph, Strynadka, Natalie C. J., Cherkasov, Artem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid global spread of the SARS-CoV-2 virus facilitated the development of novel direct-acting antiviral agents (DAAs). The papain-like protease (PLpro) has been proposed as one of the major SARS-CoV-2 targets for DAAs due to its dual role in processing viral proteins and facilitating the host’s immune suppression. This dual role makes identifying small molecules that can effectively neutralize SARS-CoV-2 PLpro activity a high-priority task. However, PLpro drug discovery faces a significant challenge due to the high mobility and induced-fit effects in the protease’s active site. Herein, we virtually screened the ZINC20 database with Deep Docking (DD) to identify prospective noncovalent PLpro binders and combined ultra-large consensus docking with two pharmacophore (ph4)-filtering strategies. The analysis of active compounds revealed their somewhat-limited diversity, likely attributed to the induced-fit nature of PLpro’s active site in the crystal structures, and therefore, the use of rigid docking protocols poses inherited limitations. The top hits were assessed against recombinant viral proteins and live viruses, demonstrating desirable inhibitory activities. The best compound VPC-300195 (IC50: 15 μM) ranks among the top noncovalent PLpro inhibitors discovered through in silico methodologies. In the search for novel SARS-CoV-2 PLpro-specific chemotypes, the identified inhibitors could serve as diverse templates for the development of effective noncovalent PLpro inhibitors.
ISSN:1549-9596
1549-960X
DOI:10.1021/acs.jcim.2c01641