Metric fixed point theory and partial impredicativity
We show that the Priess-Crampe & Ribenboim fixed point theorem is provable in [Formula: see text]. Furthermore, we show that Caristi's fixed point theorem for both Baire and Borel functions is equivalent to the transfinite leftmost path principle, which falls strictly between [Formula: see...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2023-05, Vol.381 (2248), p.20220012-20220012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the Priess-Crampe & Ribenboim fixed point theorem is provable in [Formula: see text]. Furthermore, we show that Caristi's fixed point theorem for both Baire and Borel functions is equivalent to the transfinite leftmost path principle, which falls strictly between [Formula: see text] and [Formula: see text]. We also exhibit several weakenings of Caristi's theorem that are equivalent to [Formula: see text] and to [Formula: see text]. This article is part of the theme issue 'Modern perspectives in Proof Theory'. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2022.0012 |