Metric fixed point theory and partial impredicativity

We show that the Priess-Crampe & Ribenboim fixed point theorem is provable in [Formula: see text]. Furthermore, we show that Caristi's fixed point theorem for both Baire and Borel functions is equivalent to the transfinite leftmost path principle, which falls strictly between [Formula: see...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2023-05, Vol.381 (2248), p.20220012-20220012
Hauptverfasser: Fernández-Duque, D, Shafer, P, Towsner, H, Yokoyama, K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the Priess-Crampe & Ribenboim fixed point theorem is provable in [Formula: see text]. Furthermore, we show that Caristi's fixed point theorem for both Baire and Borel functions is equivalent to the transfinite leftmost path principle, which falls strictly between [Formula: see text] and [Formula: see text]. We also exhibit several weakenings of Caristi's theorem that are equivalent to [Formula: see text] and to [Formula: see text]. This article is part of the theme issue 'Modern perspectives in Proof Theory'.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2022.0012