Addressing antibiotic resistance: computational answers to a biological problem?

The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in microbiology 2023-08, Vol.74, p.102305-102305, Article 102305
Hauptverfasser: Behling, Anna H, Wilson, Brooke C, Ho, Daniel, Virta, Marko, O’Sullivan, Justin M, Vatanen, Tommi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applied to metagenomic sequencing data offer the capacity to detect known and infer yet-unknown resistance mechanisms, and predict future outbreaks of antibiotic-resistant infections. Machine learning methods, in particular, could revive the waning antibiotic discovery pipeline by helping to predict the molecular structure and function of antibiotic resistance compounds, and optimising their interactions with target proteins. Consequently, AI has the capacity to play a central role in guiding antibiotic stewardship and future clinical decision-making around antibiotic resistance.
ISSN:1369-5274
1879-0364
DOI:10.1016/j.mib.2023.102305