Metastable Polymorphic Phases in Monolayer TaTe2

Polymorphic phases and collective phenomena—such as charge density waves (CDWs)—in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine‐tuning of growth conditions via methods such as m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-07, Vol.19 (29), p.e2300262-n/a
Hauptverfasser: Di Bernardo, Iolanda, Ripoll‐Sau, Joan, Silva‐Guillén, Jose Angel, Calleja, Fabian, Ayani, Cosme G., Miranda, Rodolfo, Canadell, Enric, Garnica, Manuela, Vázquez de Parga, Amadeo L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymorphic phases and collective phenomena—such as charge density waves (CDWs)—in transition metal dichalcogenides (TMDs) dictate the physical and electronic properties of the material. Most TMDs naturally occur in a single given phase, but the fine‐tuning of growth conditions via methods such as molecular beam epitaxy (MBE) allows to unlock otherwise inaccessible polymorphic structures. Exploring and understanding the morphological and electronic properties of new phases of TMDs is an essential step to enable their exploitation in technological applications. Here, scanning tunneling microscopy (STM) is used to map MBE‐grown monolayer (ML) TaTe2. This work reports the first observation of the 1H polymorphic phase, coexisting with the 1T, and demonstrates that their relative coverage can be controlled by adjusting synthesis parameters. Several superperiodic structures, compatible with CDWs, are observed to coexist on the 1T phase. Finally, this work provides theoretical insight on the delicate balance between Te…Te and Ta–Ta interactions that dictates the stability of the different phases. The findings demonstrate that TaTe2 is an ideal platform to investigate competing interactions, and indicate that accurate tuning of growth conditions is key to accessing metastable states in TMDs. This work demonstrates the formation of large scale TaTe2 islands by molecular beam epitaxy with different polymorphs, some of them not reported before‐ as the 1H phase. The first‐principles calculations rationalize these results and show that the different phases are a consequence of a delicate trade between Te…Te and Ta–Ta interactions.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202300262